
GitHub - tensorflow/gan: Tooling for GANs in TensorFlow
TF-GAN is a lightweight library for training and evaluating Generative Adversarial Networks (GANs). Can be installed with pip using pip install tensorflow-gan, and used with import …
如何形象又有趣的讲解对抗神经网络(GAN)是什么? - 知乎
GAN在过去几年里已成为深度学习中最热门的子领域之一,Yann LeCun说GAN是过去10年机器学习最有趣的想法。 看完后,你应该对: GAN是什么 具体要做一个简单的GAN应该怎么做 …
The GAN is dead; long live the GAN! A Modern Baseline GAN …
Code for NeurIPS 2024 paper - The GAN is dead; long live the GAN! A Modern Baseline GAN - by Huang et al. - brownvc/R3GAN
GitHub - eriklindernoren/PyTorch-GAN: PyTorch implementations …
Softmax GAN is a novel variant of Generative Adversarial Network (GAN). The key idea of Softmax GAN is to replace the classification loss in the original GAN with a softmax cross …
GitHub - tkarras/progressive_growing_of_gans: Progressive …
The Progressive GAN code repository contains a command-line tool for recreating bit-exact replicas of the datasets that we used in the paper. The tool also provides various utilities for …
有哪些性价比高的GAN魔方?Gan魔方的哪款好?Gan智能魔方推 …
GAN魔方logo 前言 大家好,我是 @桑德斯闪电 目前本人四阶魔方速拧官方排名全国第二(世界魔方协会ID:2018HUAN08),平均7秒复原三阶魔方,对各个魔方产品以及魔方性能指标有较 …
GitHub - gordicaleksa/pytorch-GANs: My implementation of …
This repo contains PyTorch implementation of various GAN architectures. It's aimed at making it easy for beginners to start playing and learning about GANs. All of the repos I found do …
PyTorch Pretrained GANs - GitHub
Apr 11, 2021 · Each type of GAN is contained in its own folder and has a make_GAN_TYPE function. For example, make_bigbigan creates a BigBiGAN with the format of the …
NVlabs/denoising-diffusion-gan - GitHub
Generative denoising diffusion models typically assume that the denoising distribution can be modeled by a Gaussian distribution. This assumption holds only for small denoising steps, …
GitHub - mingjie0508/MAE_GAN: Masked Autoencoder (MAE) for …
MAE_GAN In this project, we explore the use of Masked Autoencoder (MAE) in inpainting tasks. By combining MAE with GAN and using perceptual loss functions, we can obtain clear, …